
NETL CAPE-OPEN meeting www.colan.org Morgantown 25th-26th May 2005

CAPE-OPEN
Numerical Solver

Interfaces

CAPE-OPEN
Numerical Solver

Interfaces

Ben KeepingBen Keeping

Process Systems Enterprise LtdProcess Systems Enterprise Ltd

NETL CAPE-OPEN meeting 2 www.colan.org Morgantown 25th-26th May 2005

Overview

Background and scope of CAPEBackground and scope of CAPE--OPEN Numerical OPEN Numerical
SolversSolvers

The challengeThe challenge

General principles of CAPEGeneral principles of CAPE--OPEN OPEN NumericsNumerics interfacesinterfaces

Illustration Illustration –– implementing simple nonlinear solverimplementing simple nonlinear solver

Concluding remarksConcluding remarks

NETL CAPE-OPEN meeting 3 www.colan.org Morgantown 25th-26th May 2005

Overview

Background and scope of CAPEBackground and scope of CAPE--OPEN Numerical OPEN Numerical
SolversSolvers

The challengeThe challenge

General principles of CAPEGeneral principles of CAPE--OPEN OPEN NumericsNumerics interfacesinterfaces

Illustration Illustration –– implementing simple nonlinear solver implementing simple nonlinear solver

Concluding remarksConcluding remarks

NETL CAPE-OPEN meeting 4 www.colan.org Morgantown 25th-26th May 2005

Model-centric process engineering

Product Design

Plant Design

Plant Operations

Process
Development

Models

Plant Control

NETL CAPE-OPEN meeting 5 www.colan.org Morgantown 25th-26th May 2005

General-purpose process modelling tools

Process Modelling Tool

Process
Model

Steady-state
& Dynamic
Simulation

Steady-state
& Dynamic

Optimisation

Parameter
Estimation

Data
Reconciliation

Process
Development

Plant
Design

Operator
Training

Plant Control
System Design

Plant
Control

Plant Start-up
& Shut-down

NETL CAPE-OPEN meeting 6 www.colan.org Morgantown 25th-26th May 2005

Core model-based activities

Process Modelling Tool

Process
Model

Steady-state
& Dynamic
Simulation

Steady-state
& Dynamic

Optimisation

Parameter
Estimation

Data
Reconciliation

NETL CAPE-OPEN meeting 7 www.colan.org Morgantown 25th-26th May 2005

CAPE-OPEN scope for numerical solvers

Variety of core modelVariety of core model--based activitiesbased activities
SteadySteady--state & dynamic simulationstate & dynamic simulation
SteadySteady--state optimisationstate optimisation
Parameter estimation and data reconciliationParameter estimation and data reconciliation

Both “modular” and “equationBoth “modular” and “equation--orientated” systemsorientated” systems

Emphasis on “largeEmphasis on “large--scale” problemsscale” problems

NETL CAPE-OPEN meeting 8 www.colan.org Morgantown 25th-26th May 2005

Typical modular process modelling
tool

NETL CAPE-OPEN meeting 9 www.colan.org Morgantown 25th-26th May 2005

Typical Equation-Orientated process modelling
tool

NETL CAPE-OPEN meeting 10 www.colan.org Morgantown 25th-26th May 2005

Overview

Background and scope of CAPEBackground and scope of CAPE--OPEN Numerical SolversOPEN Numerical Solvers

The challengeThe challenge

General principles of CAPEGeneral principles of CAPE--OPEN OPEN NumericsNumerics interfacesinterfaces

Illustration Illustration –– implementing simple nonlinear solver implementing simple nonlinear solver

Concluding remarksConcluding remarks

NETL CAPE-OPEN meeting 11 www.colan.org Morgantown 25th-26th May 2005

A wide variety of mathematical problem types
depending on application

SteadySteady--state simulationstate simulation
Sets of nonlinear algebraic equationsSets of nonlinear algebraic equations
Sets of integral, partial differential and algebraic equationsSets of integral, partial differential and algebraic equations

Dynamic simulationDynamic simulation
Sets of differential & algebraic equationsSets of differential & algebraic equations
Sets of integral, partial differential and algebraic equationsSets of integral, partial differential and algebraic equations

Plant designPlant design
(mixed integer) nonlinear programming(mixed integer) nonlinear programming
(mixed integer) dynamic (mixed integer) dynamic optimisaitonoptimisaiton

Plant operation and controlPlant operation and control
Linear programmingLinear programming
Nonlinear programmingNonlinear programming
Dynamic optimisationDynamic optimisation

Production planning & schedulingProduction planning & scheduling
(mixed integer) linear programming(mixed integer) linear programming

NETL CAPE-OPEN meeting 12 www.colan.org Morgantown 25th-26th May 2005

A hierarchy of solvers
To do steadyTo do steady--state simulation of a distillation columnstate simulation of a distillation column

we need to solve sets of nonlinear algebraic we need to solve sets of nonlinear algebraic
equations…equations…

•• which involves solving linear equations… which involves solving linear equations…

To optimise the grade transition in a polymerisation To optimise the grade transition in a polymerisation
reactorreactor

we need to solve a dynamic optimisation problemwe need to solve a dynamic optimisation problem
•• which involves solving sets of which involves solving sets of DAEsDAEs

–– which involves solving linear algebraic equationswhich involves solving linear algebraic equations
–– …and also solving nonlinear algebraic equations (2 different …and also solving nonlinear algebraic equations (2 different

types)types)
»» which involves solving linear equationswhich involves solving linear equations

•• .. and also nonlinear programming problems.. and also nonlinear programming problems
–– which involves solving (more) linear equations…which involves solving (more) linear equations…

NETL CAPE-OPEN meeting 13 www.colan.org Morgantown 25th-26th May 2005

Solver hierarchies
Activity: optimise the dynamic response of a unit

1: Dynamic Optimisation

2b: NLP

3d: LAE-II

2a: DAE

3c: LAE-I3a: NLAE-I

4a: LAE-III

3b: NLAE-II

4b: LAE-IV

NETL CAPE-OPEN meeting 14 www.colan.org Morgantown 25th-26th May 2005

Overview

Background and scope of CAPEBackground and scope of CAPE--OPEN Numerical SolversOPEN Numerical Solvers

The challengeThe challenge

General principles of CAPEGeneral principles of CAPE--OPEN OPEN NumericsNumerics interfacesinterfaces

Illustration Illustration –– implementing simple nonlinear solverimplementing simple nonlinear solver

Concluding remarksConcluding remarks

NETL CAPE-OPEN meeting 15 www.colan.org Morgantown 25th-26th May 2005

CAPE-OPEN objectives for numerical solvers

Allow the usage of solvers from different sources to Allow the usage of solvers from different sources to
perform all the activities supported by process perform all the activities supported by process
modelling tools modelling tools

complete “mixcomplete “mix--andand--match” match”
…at …at anyany point in the hierarchypoint in the hierarchy
…not just at the top activity level…not just at the top activity level

Provide access to the mathematical statements of the Provide access to the mathematical statements of the
modelsmodels

allows the construction of thirdallows the construction of third--party software to party software to
perform activities that are perform activities that are notnot directly supported by directly supported by
process modelling toolsprocess modelling tools

•• e.g. modele.g. model--based fault detectionbased fault detection

NETL CAPE-OPEN meeting 16 www.colan.org Morgantown 25th-26th May 2005

CAPE-OPEN Problem Objects

Fundamental principle: complete separation betweenFundamental principle: complete separation between
the description of the problem being solvedthe description of the problem being solved
the code used for its solutionthe code used for its solution

Describe different types of mathematical problems as Describe different types of mathematical problems as
different software object classes with formally defined different software object classes with formally defined
interfacesinterfaces
Mathematical Problem TypeMathematical Problem Type CAPECAPE--OPEN Problem ObjectOPEN Problem Object

Nonlinear algebraic equationsNonlinear algebraic equations Equation Set Object (Equation Set Object (ESOESO))

DifferentialDifferential--algebraic equationsalgebraic equations Differential Algebraic ESO (Differential Algebraic ESO (DAESODAESO))

Partial differentialPartial differential--algebraic algebraic
equationsequations

Partial Differential Algebraic ESO Partial Differential Algebraic ESO
((PDAESOPDAESO))

Mixed integer nonlinear Mixed integer nonlinear
programming problemsprogramming problems

minlpminlp objectobject

NETL CAPE-OPEN meeting 17 www.colan.org Morgantown 25th-26th May 2005

CAPE-OPEN System Factories & Systems

Classify numerical solvers into different categoriesClassify numerical solvers into different categories
Nonlinear algebraic equation solversNonlinear algebraic equation solvers
DifferentialDifferential--algebraic equation solversalgebraic equation solvers
.

Each COEach CO--compliant solver provides a compliant solver provides a Solver ManagerSolver Manager

A A CO SystemCO System can be constructed by applying a CO can be constructed by applying a CO
Solver Manager to a CO Problem ObjectSolver Manager to a CO Problem Object

⎭
⎬
⎫

⎩
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧

≡
⎭
⎬
⎫

⎩
⎨
⎧ −

solutionforused
codeNumerical

solvedbeing
Problem

System
OPENCAPE

NETL CAPE-OPEN meeting 18 www.colan.org Morgantown 25th-26th May 2005

CAPE-OPEN Systems

⎭
⎬
⎫

⎩
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧

≡
⎭
⎬
⎫

⎩
⎨
⎧ −

solutionforused
codeNumerical

solvedbeing
Problem

System
OPENCAPE

Each CAPEEach CAPE--OPEN System has method(s) for solving the OPEN System has method(s) for solving the
problemproblem

Final solution of the problem is placed in the CO Final solution of the problem is placed in the CO
Problem Object Problem Object

NETL CAPE-OPEN meeting 19 www.colan.org Morgantown 25th-26th May 2005

Overview

Background and scope of CAPEBackground and scope of CAPE--OPEN Numerical SolversOPEN Numerical Solvers

The challengeThe challenge

General principles of CAPEGeneral principles of CAPE--OPEN OPEN NumericsNumerics interfacesinterfaces

Illustration Illustration –– implementing simple nonlinear solverimplementing simple nonlinear solver

Concluding remarksConcluding remarks

NETL CAPE-OPEN meeting 20 www.colan.org Morgantown 25th-26th May 2005

CAPE-OPEN: how to solve a numerical
problem

Example:Example:

Do a steadyDo a steady--state simulation of a distillation columnstate simulation of a distillation column

NETL CAPE-OPEN meeting 21 www.colan.org Morgantown 25th-26th May 2005

CAPE-OPEN: how to solve a numerical
problem

Step 1: Construct a CO Problem ObjectStep 1: Construct a CO Problem Object
e.g. an Equation Set Object containing the column equations, e.g. an Equation Set Object containing the column equations,
columnESOcolumnESO

Step 2: Obtain a COStep 2: Obtain a CO--compliant Solver Manager for an appropriate compliant Solver Manager for an appropriate
solversolver

e.g the BDNLSOL solver from PSE Ltd., e.g the BDNLSOL solver from PSE Ltd., bdnlsolMGRbdnlsolMGR
Step 3: Pass the Problem Object to the Solver Manager to obtain Step 3: Pass the Problem Object to the Solver Manager to obtain a CO a CO
SystemSystem

e.g. e.g. mySystemmySystem = = bdnlsolMGRbdnlsolMGR-->>CreateNLSystem(columnESOCreateNLSystem(columnESO) ;) ;
Step 4: Ask the System to solve itselfStep 4: Ask the System to solve itself

e.g. e.g. mySystemmySystem-->Solve(); >Solve();
Step 5: Retrieve the solution from the CO Problem ObjectStep 5: Retrieve the solution from the CO Problem Object

e.g. e.g. X = X = columnESOcolumnESO-->>GetVariablesGetVariables() ; () ;

NETL CAPE-OPEN meeting 22 www.colan.org Morgantown 25th-26th May 2005

Under the hood – interaction between solver
and ESO

Excursion Excursion –– nonlinear solver for specific problemnonlinear solver for specific problem

Next stage of generalisation Next stage of generalisation –– handhand--coded user functionscoded user functions

Finally Finally –– the ESO: no coding!the ESO: no coding!

NETL CAPE-OPEN meeting 23 www.colan.org Morgantown 25th-26th May 2005

Example problem

K1 = 0.5, K2 = 5

0
1
2
3
4
5
6
7
8

0 2 4 6

x1

x2

f1
f2221

1
2
21

Kxx
Kxx

=
=+

NETL CAPE-OPEN meeting 24 www.colan.org Morgantown 25th-26th May 2005

Stage 1: specifically coded solution

K1 = 0.5, K2 = 5

0
1
2
3
4
5
6
7
8

0 2 4 6

x1

x2

f1
f2

void void solve(doublesolve(double x1, double x1, double
x2, double k1, double k2)x2, double k1, double k2)

// initial guess// initial guess
x1 = sqrt(k2)x1 = sqrt(k2)
// Iteration// Iteration
IntInt iteriter = 0= 0
RepeatRepeat

x2 = sqrt(k1 x2 = sqrt(k1 –– x1)x1)
x1 = k2/x2x1 = k2/x2

Until abs(k1 Until abs(k1 –– x1 x1 –– x2^2) < x2^2) <
epseps

OR OR iteriter = = itermaxitermax

NETL CAPE-OPEN meeting 25 www.colan.org Morgantown 25th-26th May 2005

Stage 2: Hand-coded user functions…

ResidualsResiduals::

void void f(doublef(double x[], double k[], double r[])x[], double k[], double r[])

r[0] = x[0] + x[1]^2 r[0] = x[0] + x[1]^2 –– k[0]k[0]

r[1] = x[0] * x[1] r[1] = x[0] * x[1] –– k[1]k[1]

JacobianJacobian::

void void j(doublej(double x[], double k[], double x[], double k[], double
A[][])A[][])

A[0][0] = 1A[0][0] = 1

A[0][1] = 2 * x[1]A[0][1] = 2 * x[1]

A[1][0] = x[1]A[1][0] = x[1]

A[1][1] = x[0]A[1][1] = x[0]

221

1
2
21

Kxx
Kxx

=
=+

NETL CAPE-OPEN meeting 26 www.colan.org Morgantown 25th-26th May 2005

… but general solver
Nlsolve(xNlsolve(x[], double k[])[], double k[])

double double A[neq][nvarA[neq][nvar]]
double double r[neqr[neq],], delta[nvardelta[nvar]]
niterniter = 0= 0
RepeatRepeat

call call f(xf(x, k, r), k, r)
call call j(xj(x, k, A), k, A)

call call linsolve(Alinsolve(A, r, delta), r, delta)

x = x x = x –– delta; delta; niterniter++++

Until Until abs(deltaabs(delta) <) < epseps OR OR niterniter = = itermaxitermax

NETL CAPE-OPEN meeting 27 www.colan.org Morgantown 25th-26th May 2005

Stage 3: Use the ESO
ResidualsResiduals::

void void f(doublef(double x[], double k[], double r[])x[], double k[], double r[])
GlobalVarSet.SetAssignedVariables(kGlobalVarSet.SetAssignedVariables(k););
UnknownsVarSet.SetAllVariables(xUnknownsVarSet.SetAllVariables(x););
ESO.GetAllResiduals(rESO.GetAllResiduals(r););

JacobianJacobian::

void void j(doublej(double x[], double k[], double A[][])x[], double k[], double A[][])
GlobalVarSet.SetAssignedVariables(kGlobalVarSet.SetAssignedVariables(k););
UnknownsVarSet.SetAllVariables(xUnknownsVarSet.SetAllVariables(x););
ESO.GetAllJacobianElements(AESO.GetAllJacobianElements(A););

NETL CAPE-OPEN meeting 28 www.colan.org Morgantown 25th-26th May 2005

Note on ESO Implementation

Basic idea is to treat equations (and Basic idea is to treat equations (and
derivatives) as dataderivatives) as data
“Data” can now take the form of generated “Data” can now take the form of generated
machine code, for speedmachine code, for speed
Not necessary for solver to access symbolic Not necessary for solver to access symbolic
form: only structure, residuals and form: only structure, residuals and JacobianJacobian
valuesvalues

NETL CAPE-OPEN meeting 29 www.colan.org Morgantown 25th-26th May 2005

Stage 4: Componentise solver

All solvers have this interface:All solvers have this interface:

interface interface ICapeNumericSolverComponentICapeNumericSolverComponent : :
ICapeUtilityComponentICapeUtilityComponent { {

CapeSolverTypeCapeSolverType GetTypeGetType(); ();

void void SelfDestructSelfDestruct(); ();

CapeArrayInterfaceCapeArrayInterface GetParametersGetParameters();();

CapeInterfaceCapeInterface GetParameterByName(inGetParameterByName(in CapeStringCapeString name);name);

CapeArrayInterfaceCapeArrayInterface GetStatisticsGetStatistics();();

CapeInterfaceCapeInterface GetStatisticByName(inGetStatisticByName(in CapeStringCapeString name);name);

};};

NLASystemNLASystem is created using an ESO, and just adds Solve();is created using an ESO, and just adds Solve();

NETL CAPE-OPEN meeting 30 www.colan.org Morgantown 25th-26th May 2005

Stage 4: Evolution
Nlsolve(xNlsolve(x[], double k[])[], double k[])

double double A[neq][nvarA[neq][nvar]]
double double r[neqr[neq],], delta[nvardelta[nvar]]
niterniter = 0= 0
RepeatRepeat

call call f(xf(x, k, r), k, r)
call call j(xj(x, k, A), k, A)

call call linsolve(Alinsolve(A, r, delta), r, delta)

x = x x = x –– deltadelta; ; niterniter++++

Until Until abs(deltaabs(delta) <) < epseps OR OR niterniter = = itermaxitermax

NETL CAPE-OPEN meeting 31 www.colan.org Morgantown 25th-26th May 2005

Stage 4: Evolution
SimpleSolver::SolveSimpleSolver::Solve()()
CapeArrayDouble_varCapeArrayDouble_var xx
m_UnknownVarSetm_UnknownVarSet-->>GetAllVariables(xGetAllVariables(x))
double double A[neq][nvarA[neq][nvar]]
double double r[neqr[neq],], delta[nvardelta[nvar]]
niterniter = 0= 0
RepeatRepeat

call call f(xf(x, k, r), k, r)
call call j(xj(x, k, A), k, A)

call call linsolve(Alinsolve(A, r, delta), r, delta)

x = x x = x –– deltadelta; ; niterniter++++
m_UnknownVarSetm_UnknownVarSet-->>SetAllVariables(xSetAllVariables(x))

Until Until abs(deltaabs(delta) <) < epseps OR OR niterniter = = itermaxitermax

NETL CAPE-OPEN meeting 32 www.colan.org Morgantown 25th-26th May 2005

Stage 4: Evolution
SimpleSolver::SolveSimpleSolver::Solve()()
CapeArrayDouble_varCapeArrayDouble_var xx
m_UnknownVarSetm_UnknownVarSet-->>GetAllVariables(xGetAllVariables(x))
CapeArrayDouble_varCapeArrayDouble_var AA
CapeArrayDouble_varCapeArrayDouble_var r, deltar, delta
niterniter = 0= 0
RepeatRepeat

call call f(xf(x, k, r), k, r)
call call j(xj(x, k, A), k, A)

call call linsolve(Alinsolve(A, r, delta), r, delta)

x = x x = x –– deltadelta; ; niterniter++++
m_UnknownVarSetm_UnknownVarSet-->>SetAllVariables(xSetAllVariables(x))

Until Until abs(deltaabs(delta) <) < epseps OR OR niterniter = = itermaxitermax

NETL CAPE-OPEN meeting 33 www.colan.org Morgantown 25th-26th May 2005

Stage 4: Evolution
SimpleSolver::SolveSimpleSolver::Solve()()
CapeArrayDouble_varCapeArrayDouble_var xx
m_UnknownVarSetm_UnknownVarSet-->>GetAllVariables(xGetAllVariables(x))
CapeArrayDouble_varCapeArrayDouble_var AA
CapeArrayDouble_varCapeArrayDouble_var r, deltar, delta
niterniter = 0= 0
RepeatRepeat

call call m_ESOm_ESO-->>GetResiduals(rGetResiduals(r))
call call j(xj(x, k, A), k, A)

call call linsolve(Alinsolve(A, r, delta), r, delta)

x = x x = x –– deltadelta; ; niterniter++++
m_UnknownVarSetm_UnknownVarSet-->>SetAllVariables(xSetAllVariables(x))

Until Until abs(deltaabs(delta) <) < epseps OR OR niterniter = = itermaxitermax

NETL CAPE-OPEN meeting 34 www.colan.org Morgantown 25th-26th May 2005

Stage 4: Evolution
SimpleSolver::SolveSimpleSolver::Solve()()
CapeArrayDouble_varCapeArrayDouble_var xx
m_UnknownVarSetm_UnknownVarSet-->>GetAllVariables(xGetAllVariables(x))
CapeArrayDouble_varCapeArrayDouble_var AA
CapeArrayDouble_varCapeArrayDouble_var r, deltar, delta
niterniter = 0= 0
RepeatRepeat

call call m_ESOm_ESO-->>GetResiduals(rGetResiduals(r))
call call m_ESOm_ESO-->>GetJacobianValues(AGetJacobianValues(A))

call call linsolve(Alinsolve(A, r, delta), r, delta)

x = x x = x –– deltadelta; ; niterniter++++
m_UnknownVarSetm_UnknownVarSet-->>SetAllVariables(xSetAllVariables(x))

Until Until abs(deltaabs(delta) <) < epseps OR OR niterniter = = itermaxitermax

NETL CAPE-OPEN meeting 35 www.colan.org Morgantown 25th-26th May 2005

Stage 4: Evolution
SimpleSolver::SolveSimpleSolver::Solve()()
CapeArrayDouble_varCapeArrayDouble_var xx
m_UnknownVarSetm_UnknownVarSet-->>GetAllVariables(xGetAllVariables(x))
CapeArrayDouble_varCapeArrayDouble_var AA
CapeArrayDouble_varCapeArrayDouble_var r, deltar, delta
niterniter = 0= 0
RepeatRepeat

call call m_ESOm_ESO-->>GetResiduals(rGetResiduals(r))
call call m_ESOm_ESO-->>GetJacobianValues(AGetJacobianValues(A))
call call m_LinSolm_LinSol-->>SetMatrixValues(ASetMatrixValues(A))
call call m_LinSolm_LinSol-->>SetRHS(rSetRHS(r))
call call m_LinSolm_LinSol-->>GetSolution(deltaGetSolution(delta))
x = x x = x –– deltadelta; ; niterniter++++
m_UnknownVarSetm_UnknownVarSet-->>SetAllVariables(xSetAllVariables(x))

Until Until abs(deltaabs(delta) <) < epseps OR OR niterniter = = itermaxitermax

NETL CAPE-OPEN meeting 36 www.colan.org Morgantown 25th-26th May 2005

Stage 4: Evolution
SimpleSolver::SolveSimpleSolver::Solve()()
CapeArrayDouble_varCapeArrayDouble_var xx
m_UnknownVarSetm_UnknownVarSet-->>GetAllVariables(xGetAllVariables(x))
CapeArrayDouble_varCapeArrayDouble_var AA
CapeArrayDouble_varCapeArrayDouble_var r, deltar, delta
niterniter = 0= 0
RepeatRepeat

call call m_ESOm_ESO-->>GetResiduals(rGetResiduals(r))
call call m_ESOm_ESO-->>GetJacobianValues(AGetJacobianValues(A))
call call m_LinSolm_LinSol-->>SetMatrixValues(ASetMatrixValues(A))
call call m_LinSolm_LinSol-->>SetRHS(rSetRHS(r))
call call m_LinSolm_LinSol-->>GetSolution(deltaGetSolution(delta))
x = x x = x –– deltadelta; ; niterniter++++
m_UnknownVarSetm_UnknownVarSet-->>SetAllVariables(xSetAllVariables(x))

Until Until abs(deltaabs(delta) <) < epseps OR OR niterniter = = itermaxitermax

Parameter:
Linear
solver

Parameter:
max

iterations

Parameter:
success
condition

Statistic:
actual

iterations

NETL CAPE-OPEN meeting 37 www.colan.org Morgantown 25th-26th May 2005

Stage 5: Package for gPROMS

Create a DLL (Windows) or shared object (Unix) with a Create a DLL (Windows) or shared object (Unix) with a
single exported function, “init” single exported function, “init” –– say say MySimpNL.dllMySimpNL.dll

“init” function must return CORBA object reference “init” function must return CORBA object reference
to the to the solver’ssolver’s SolverManagerSolverManager..

Place DLL in gPROMS’ Place DLL in gPROMS’ slvslv subdirectory.subdirectory.
Tell gPROMS to use the solver:Tell gPROMS to use the solver:

SOLUTIONPARAMETERSSOLUTIONPARAMETERS
NLSolverNLSolver:=“:=“MySimpNLMySimpNL”;”;

Note: for truly interoperable solvers, need Note: for truly interoperable solvers, need
to standardise these details!to standardise these details!

NETL CAPE-OPEN meeting 38 www.colan.org Morgantown 25th-26th May 2005

Additional example: MINLP solver

gPROMS Solution parameters:gPROMS Solution parameters:

DOSolverDOSolver := "CVP_SS" [:= "CVP_SS" [

""DASolverDASolver" := "DASOLV"," := "DASOLV",

""MINLPSolverMINLPSolver" := "OAERAP" [" := "OAERAP" [

""MaxIterationsMaxIterations" := 10000," := 10000,

""OptimisationToleranceOptimisationTolerance" := 0.0001," := 0.0001,

""MILPSolverMILPSolver" := "GLPK"," := "GLPK",

""NLPSolverNLPSolver" := "SRQPD"" := "SRQPD"

]]

]]

NETL CAPE-OPEN meeting 39 www.colan.org Morgantown 25th-26th May 2005

Additional example: MINLP solver

gPROMS Solution parameters:gPROMS Solution parameters:

DOSolverDOSolver := "CVP_SS" [:= "CVP_SS" [

""DASolverDASolver" := "DASOLV"," := "DASOLV",

""MINLPSolverMINLPSolver" := "OAERAP" [" := "OAERAP" [

""MaxIterationsMaxIterations" := 10000," := 10000,

""OptimisationToleranceOptimisationTolerance" := 0.0001," := 0.0001,

""MILPSolverMILPSolver" := "GLPK"," := "GLPK",

""NLPSolverNLPSolver" := "SRQPD"" := "SRQPD"

]]

]]

Task:Task: Dynamic OptimisationDynamic Optimisation
Interface:Interface: IgDOSolverManagerIgDOSolverManager
Status:Status: Standardisation candidateStandardisation candidate

NETL CAPE-OPEN meeting 40 www.colan.org Morgantown 25th-26th May 2005

Additional example: MINLP solver

gPROMS Solution parameters:gPROMS Solution parameters:

DOSolverDOSolver := "CVP_SS" [:= "CVP_SS" [

""DASolverDASolver" := "DASOLV"," := "DASOLV",

""MINLPSolverMINLPSolver" := "OAERAP" [" := "OAERAP" [

""MaxIterationsMaxIterations" := 10000," := 10000,

""OptimisationToleranceOptimisationTolerance" := 0.0001," := 0.0001,

""MILPSolverMILPSolver" := "GLPK"," := "GLPK",

""NLPSolverNLPSolver" := "SRQPD"" := "SRQPD"

]]

]]

Task:Task: IntegrationIntegration
Interface:Interface: ICapeNumericDAESolverManagerICapeNumericDAESolverManager
Status:Status: Standard interfaceStandard interface

NETL CAPE-OPEN meeting 41 www.colan.org Morgantown 25th-26th May 2005

Additional example: MINLP solver

gPROMS Solution parameters:gPROMS Solution parameters:

DOSolverDOSolver := "CVP_SS" [:= "CVP_SS" [

""DASolverDASolver" := "DASOLV"," := "DASOLV",

""MINLPSolverMINLPSolver" := "OAERAP" [" := "OAERAP" [

""MaxIterationsMaxIterations" := 10000," := 10000,

""OptimisationToleranceOptimisationTolerance" := 0.0001," := 0.0001,

""MILPSolverMILPSolver" := "GLPK"," := "GLPK",

""NLPSolverNLPSolver" := "SRQPD"" := "SRQPD"

]]

]]

Task:Task: MINLP MINLP
Interface:Interface: ICapeMINLPSolverManagerICapeMINLPSolverManager
Status:Status: Standard interfaceStandard interface

NETL CAPE-OPEN meeting 42 www.colan.org Morgantown 25th-26th May 2005

Additional example: MINLP solver

gPROMS Solution parameters:gPROMS Solution parameters:

DOSolverDOSolver := "CVP_SS" [:= "CVP_SS" [

""DASolverDASolver" := "DASOLV"," := "DASOLV",

""MINLPSolverMINLPSolver" := "OAERAP" [" := "OAERAP" [

""MaxIterationsMaxIterations" := 10000," := 10000,

""OptimisationToleranceOptimisationTolerance" := 0.0001," := 0.0001,

""MILPSolverMILPSolver" := "GLPK"," := "GLPK",

""NLPSolverNLPSolver" := "SRQPD"" := "SRQPD"

]]

]] Task:Task: MILP MILP
Interface:Interface: ICapeMILPSolverManagerICapeMILPSolverManager
Status:Status: Standard interfaceStandard interface

NETL CAPE-OPEN meeting 43 www.colan.org Morgantown 25th-26th May 2005

Additional example: MINLP solver

gPROMS Solution parameters:gPROMS Solution parameters:

DOSolverDOSolver := "CVP_SS" [:= "CVP_SS" [

""DASolverDASolver" := "DASOLV"," := "DASOLV",

""MINLPSolverMINLPSolver" := "OAERAP" [" := "OAERAP" [

""MaxIterationsMaxIterations" := 10000," := 10000,

""OptimisationToleranceOptimisationTolerance" := 0.0001," := 0.0001,

""MILPSolverMILPSolver" := "GLPK"," := "GLPK",

""NLPSolverNLPSolver" := "SRQPD"" := "SRQPD"

]]

]] Task:Task: NLP NLP
Interface:Interface: ICapeMINLPSolverManagerICapeMINLPSolverManager
Status:Status: Standard interfaceStandard interface

NETL CAPE-OPEN meeting 44 www.colan.org Morgantown 25th-26th May 2005

Additional example: MINLP solver

gPROMS Solution parameters:gPROMS Solution parameters:

DOSolverDOSolver := "CVP_SS" [:= "CVP_SS" [

""DASolverDASolver" := "DASOLV"," := "DASOLV",

""MINLPSolverMINLPSolver" := "OAERAP" [" := "OAERAP" [

""MaxIterationsMaxIterations" := 10000," := 10000,

""OptimisationToleranceOptimisationTolerance" := 0.0001," := 0.0001,

""MILPSolverMILPSolver" := "GLPK"," := "GLPK",

""NLPSolverNLPSolver" := “" := “IPOPTIPOPT""

]]

]] Task:Task: NLP NLP
Interface:Interface: ICapeMINLPSolverManagerICapeMINLPSolverManager
Status:Status: Standard interfaceStandard interface

NETL CAPE-OPEN meeting 45 www.colan.org Morgantown 25th-26th May 2005

Additional example: MINLP solver

gPROMS Solution parameters:gPROMS Solution parameters:

DOSolverDOSolver := "CVP_SS" [:= "CVP_SS" [
""OutputLevelOutputLevel" := 0," := 0,

""DASolverDASolver" := "DASOLV"," := "DASOLV",
""MINLPSolverMINLPSolver" := "OAERAP" [" := "OAERAP" [

""MaxIterationsMaxIterations" := 10000," := 10000,
""OptimisationToleranceOptimisationTolerance" := 0.0001," := 0.0001,

""OutputLevelOutputLevel" := 0," := 0,
""MILPSolverMILPSolver" := "GLPK"," := "GLPK",
""NLPSolverNLPSolver" := “" := “IPOPTIPOPT""

]]
]]

Task:Task: NLP NLP
Interface:Interface: ICapeMINLPSolverManagerICapeMINLPSolverManager
Status:Status: Standard interfaceStandard interface

NETL CAPE-OPEN meeting 46 www.colan.org Morgantown 25th-26th May 2005

Concluding remarks

CAPECAPE--OPEN promotes standardisation of solvers for OPEN promotes standardisation of solvers for
modular and equationmodular and equation--orientated modelling toolsorientated modelling tools
A wide variety of mathematical problem types to A wide variety of mathematical problem types to
support a range of modelsupport a range of model--based activities based activities

simulation, optimisation, parameter estimationsimulation, optimisation, parameter estimation
Support for stateSupport for state--ofof--thethe--art in numerical solversart in numerical solvers

interfaces make available all necessary informationinterfaces make available all necessary information
Enhance supply and usage of numerical solver Enhance supply and usage of numerical solver
technology from a variety of sourcestechnology from a variety of sources

universities & research institutesuniversities & research institutes
specialist commercial providersspecialist commercial providers

Support development of more modelSupport development of more model--based based
applicationsapplications

	CAPE-OPEN Numerical Solver Interfaces
	Overview
	Overview
	Model-centric process engineering
	General-purpose process modelling tools
	Core model-based activities
	CAPE-OPEN scope for numerical solvers
	Typical modular process modelling tool
	Typical Equation-Orientated process modelling tool
	Overview
	A wide variety of mathematical problem types depending on application
	A hierarchy of solvers
	Solver hierarchies
	Overview
	CAPE-OPEN objectives for numerical solvers
	CAPE-OPEN Problem Objects
	CAPE-OPEN System Factories & Systems
	CAPE-OPEN Systems
	Overview
	CAPE-OPEN: how to solve a numerical problem
	CAPE-OPEN: how to solve a numerical problem
	Under the hood – interaction between solver and ESO
	Example problem
	Stage 1: specifically coded solution
	Stage 2: Hand-coded user functions…
	… but general solver
	Stage 3: Use the ESO
	Note on ESO Implementation
	Stage 4: Componentise solver
	Stage 4: Evolution
	Stage 4: Evolution
	Stage 4: Evolution
	Stage 4: Evolution
	Stage 4: Evolution
	Stage 4: Evolution
	Stage 4: Evolution
	Stage 5: Package for gPROMS
	Additional example: MINLP solver
	Additional example: MINLP solver
	Additional example: MINLP solver
	Additional example: MINLP solver
	Additional example: MINLP solver
	Additional example: MINLP solver
	Additional example: MINLP solver
	Additional example: MINLP solver
	Concluding remarks

